Characteristic polynomials of distance matrices of one dimensional sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristic Polynomials of p-adic Matrices

We analyze the precision of the characteristic polynomial χ(A) of an n × n p-adic matrix A using differential precision methods developed previously. When A is integral with precision O(p), we give a criterion (checkable in time O (̃n)) for χ(A) to have precision exactly O(p). We also give a O (̃n) algorithm for determining the optimal precision when the criterion is not satisfied, and give examp...

متن کامل

Characteristic polynomials of real symmetric random matrices

It is shown that the correlation functions of the random variables det(λ−X), in which X is a real symmetric N × N random matrix, exhibit universal local statistics in the large N limit. The derivation relies on an exact dual representation of the problem: the k-point functions are expressed in terms of finite integrals over (quaternionic) k × k matrices. However the control of the Dyson limit, ...

متن کامل

Characteristic Polynomials of Nonnegative Integral Square Matrices and Clique Polynomials

Clique polynomials of vertex-weighted simple graphs coincide with polynomials of the form det(1 − xM), M a square matrix over N.

متن کامل

Characteristic Polynomials of Skew-Adjacency Matrices of Oriented Graphs

An oriented graph Gσ is a simple undirected graph G with an orientation, which assigns to each edge a direction so that Gσ becomes a directed graph. G is called the underlying graph of Gσ and we denote by S(Gσ) the skew-adjacency matrix of Gσ and its spectrum Sp(Gσ) is called the skew-spectrum of Gσ. In this paper, the coefficients of the characteristic polynomial of the skew-adjacency matrix S...

متن کامل

Logarithmic moments of characteristic polynomials of random matrices

In a recent article we have discussed the connections between averages of powers of Riemann’s ζ-function on the critical line, and averages of characteristic polynomials of random matrices. The result for random matrices was shown to be universal, i.e. independent of the specific probability distribution, and the results were derived for arbitrary moments. This allows one to extend the previous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2008

ISSN: 0024-3795

DOI: 10.1016/j.laa.2007.12.011